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Abstract—The laminar natural convective heat transfer near a rectangular corner formed by the intersection

of two vertical quarter-infinite flat plates is considered. For large Grashof numbers, the ‘boundary-layer’

equations in the corner layer are derived and appropriate boundary conditions are determined using the

method of matched asymptotic expansions. Solutions of the equations are numerically obtained for velocity

and temperature distributions for Prandtl numbers of 0.72 and 7.0. The cross-flow pattern is quite different

from the high-Reynolds number flow along the corner ; the simple inflow toward the corner appears, and
the swirling motion in the corner is not found.

1. INTRODUCTION

TwoO-DIMENSIONAL laminar natural convection boun-
dary-layer flows have been extensively investigated
both analytically and experimentally under various
surface temperature conditions [1-5]. Many applica-
tions in practice require the knowledge of natural
convection flow near the surfaces which are composed
of simple bodies such as flat plates and cylinders. Of
particular interest is the fact that the heat transfer
characteristics can be significantly affected by the
mutual interaction of the boundary layers. Thus, two-
dimensional free convection boundary-layer inter-
actions have received considerable attention in the
past.

Merkin and Smith [6] analysed a natural convection
boundary layer near two-dimensional corners and
sharp trailing edges. Eichhorn and Hasan [7] cal-
culated the mixed convection for flow over a wedge.
Hartfield and Edwards [8] studied the effect of adia-
batic wall extensions attached at the end of the down-
ward facing heated horizontal plate. On the other
hand, three-dimensional boundary-layer interactions
have received little attention. Liu and Guerra [9]
studied theoretically the natural convection flow in a
saturated porous medium near a concave corner
formed by two vertical quarter-infinite flat plates.
They calculated temperature profiles and Nusselt
number for a corner of various angles and discussed
the interaction between the two plates.

The present study analyses the natural convection
heat transfer along a vertical rectangular corner. The
corner layer equations which govern the behaviour of
laminar natural convection flow near the corner are
derived and appropriate boundary conditions are

determined using the method of matched asymptotic
expansions similar to the scheme used by Rubin [10]
for the incompressible high-Reynolds number flow
along a rectangular corner. Numerical results by the
finite difference method are presented for fluids with
a Prandtl number of 0.72 (such as air) and 7.0 (such
as water).

2. ANALYSIS

Consider the laminar natural convection flow along
a rectangular corner depicted in Fig. 1. The flow is
partitioned into the three regions (Fig. 1(b)), since the
characteristics of the flow in the respective regions are
different ; Region I away from two_plates is denoted
as the potential flow, Regions Il and Il near the plates
as the boundary layers, and Region I'V near the corner
as the corner layer. Region IV is a region of overlap
of two boundary layers where the inflow of one plane
becomes the secondary flow of the other. Solutions
for the boundary layers and potential flow are
obtained by the method of matched asymptotic
expansions and the results are used as the asymptotic
boundary conditions for the corner layer.

2.1. Corner layer equations

Using the Boussinesq approximation and neglecting
the viscous dissipation in the fluid, the governing
equations are given by

ou* ov* ow* -0 (l)
ox 0oy dz A
Du* 1 op* %2, x
N i T—T, 1b
o~ 5 o + vW*2u* 4 gf( .) (1b)
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a grid spacing parameter

Gr  local Grashof number, gBATx3/v?

h local heat transfer coefficient

k thermal conductivity

N,S transformed independent variables

Nu local Nusselt number

p* pressure in x, y, z coordinate system

p pressure in &, 1, { coordinate system

Pr Prandtl number, v/x

q local surface heat transfer rate per unit
area

¥ magnitude of cross-flow velocity

T temperature

T, wall temperature

T, ambient temperature
AT  temperature difference, T, — T,
u*, v*, w* velocity components in x, y, z
directions
velocity components in &, 4, {
directions
u,0,w velocity components in boundary layer
U,V,W velocity components in the

potential flow

u,v,w

NOMENCLATURE

U, convective velocity, 3(gBATx)"?
x,y,z Cartesian coordinate defined in Fig. |
X, 7,z dimensionless variables.

Greek symbols

thermal diffusivity

thermal expansion coefficient

Jim [nf” () =3/ ()

dimensionless temperature

direction of cross-flow velocity
dynamic viscosity

kinematic viscosity

scaled independent variables (Fig. 1)
density of fluid

wall shear stress

wall shear stress as { — o0, n/{ -0
velocity potential defined in equations
(16)

velocity potential for potential flow
streamwise vorticity function defined in
equations (17).
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Du* 1 op*

- _ __r *2,.%

D1 > O + vW*%p (1¢)
Dw* 1 op*

- —;%wv*zw* (1d)
DT
*bT = OCV*ZT (le)

where
D I} 1% 0

o= g U x
Dt T
V*Zzﬁ iz iz
ox*  oy* o 0z%

The x-coordinate is measured vertically upward from
the leading edge.

For Gr> 1, let us introduce the following scaled
and non-dimensionalized variables for the flow in the
corner layer (Region IV in Fig. 1):

u* v* (Gr\"* w* (Gr\"*
(u,v,w) = |:Uc’ic(7> ,Uc<z_> ]

p* (Gr\"?
p(n, ) AYS

_y(Gr 14 C_Z Gr\'/*
T=\%) 0 T x\a

)

where n and { are the stretched similarity variables
and U, denotes the convective velocity

U. = 3(gBATx)""%.
Substitution of equations (2) into equations (1)
yields the ‘boundary-layer’ equations appropriate to

the problem (corner layer equation), when the most
significant terms in each equation are retained

1
- 7(’7”44’&%*2“) -}-U” +w, = 0

4 (3a)
- g(ﬂu,, + Ly~ 2u) + vu, + wu, = Vu+40 (3b)
u
~a (o, +lv.+v) +ov, +wo, = —p, +Vs (3c)
u
_Z(ﬂwr,+§w4+w)+uw,1+wwg = —17;+V2w (3d)
u 1,
— 3010, +20) 00, +w0; = V0 (3¢)

where
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Fi. 1. Definition sketch : Region I, potential flow ; Regions IT and 111, boundary layers; Region IV, corner
layer.

The system of non-lincar equations (3) is to be
solved throughout the region 0 < #, { < oc subject to
the appropriate boundary conditions.

2.2. Boundary conditions

In describing the boundary conditions for the
corner layer equations, the following symmetry
properties are to be noted :

u(n, ) = u(l.m)
v(n.8) = wil,n)
0(n.¢) = 0L n).

4)

2.2.1. Wall boundary conditions. The conditions
on the wall are described simply by the no-slip and
uniform wall temperature conditions

0=1 at =0 and {=0.

)

u=r1tr=w=_0,

Far-field boundary conditions as {— o,
n/{ — 0. The asymptotic boundary conditions for the
corner layer are conveniently determined by requiring
the consistent matching with the boundary layer from
the corner. The conditions for u, v, and 6 are obtained
from the first-order boundary layer solutions as
z — 0. The condition for crossflow component w as
{ — oo, however, can be posed only by considering
the second-order boundary layer motion in Region
II. The details of the derivation are fairly involved
and only the main steps are given below, since
the derivation can be carried out in parallel with
Rubin [10].

With the known potential flow (u=v=w =0,
0 = 0), the first-order boundary layer is introduced in
order to satisfy the boundary condition § = 1 on the
plates. As usual, the following scaled and dimen-
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sionless variables are introduced :
(.5 ) = w* v* (Gr\"* w* (Gr\'*
wew=\voo\e) v \4)
_ * G 12
po (O
pUS\ 4
(6)

(7 = (T—_‘ T«’X )/(Tw -7, )

_ Gry"*

Note that only the y-coordinate is stretched whereas
the x- and z-coordinates are unchanged.

Substituting equations (6) into equations (1) and
retaining the most significant terms in each equation,
the well-known two-dimensional boundary layer
equations are obtained

_=0 and IJ=0———>0
as Yo oo,

The solution of equations (7) is given by

a=4f"(m, t=nf"N-3/(n
(8)

where f(n) and t(y) are the solutions of the natural



1360

convection on a two-dimensional vertical flat plate
S H3f ) =20 P +1(n) =0
) +3Pr f(mi'(n) =0 9
JS0)=f(0)=0, «0)=1, [f'(c0)=1(c0)=0.

The asymptotic matching condition implies that
solution (8) provides the corner-layer behaviour of
u, v, and 6 as { » co. The remaining condition for w
is determined by considering second-order boundary

layer approximations. On emerging from the bound-
ary layer, solution (8) exhibits a normal velocity

Gr\~ Y4 Gr\~ V4
v ) timae) = U, (2 for x > 0
i) M 3

which is absent in zeroth-order potential flow. This
velocity as well as the velocity on the opposite surface
must serve as a matching condition for the next-order
potential flow. Since the flow field outside the bound-
ary layers must be irrotational, we write

W v*, w¥) = (@,,2,,0.)

-4
=U, (-?) (U, v, w).

The function ® is harmonic
V0 =0 (10)

and the boundary conditions are, as a result of the
matching conditions

Gr\~ "4
(Dy=yUc(Tr> aty=0",x,2z>0

=0 y=0",x<0,z>0

G —1/4
CDz=yUc<Tr> atz=0%,x,y>0

=0 z=0%,x<0,y>0.
The solution of equation (10) for x,y,z > 0 is given
by

Ux,y,2) =y l:f“(l+c_2)“/8 {(cos% — sin%—’)

3 3
-4 <cosZGI +sinz(91>}

0 0
~_ 1 ~2\—1/8 72 a2
+77'A+4%) {(cos4 sm4>

3
—(1+73)2 <005292+sin%02)}]

6
Vix,y,z) = y(14+72)- "8 (cos—4—2 — sin%)

W(x,p,z) = y(1++L>)~ V8 (cos% — sin61>

4 (11)
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where

g, =tan" 1.

The cross-flow component of velocity appears as a
result of the mutual interaction of the boundary layers
and this leads to a second-order boundary layer flow.

Since only the asymptotic condition for w in the
corner layer is of interest, analysis of the secondary
boundary layer will be limited to the cross-flow com-
ponent of velocity. The second-order boundary layer
equations for 7, 7, and G'arc in accord with that of the
two-dimensional vertical flat plate {12]. The equation
governing the w-distribution is obtained from equa-
tion (1d), using the boundary layer variables (6)

aw  _ow  _ow 3w
TaE e Tty T er

w=0at¥=0,1w- W02 as¥ -

(12)

where W is given by equations (11).
For small 7 and £, the asymptotic behaviour of W

is given by
{ 5.,
It may be assumed that, following Rubin [10]

w e~ yHy ().

With # and ¢ given by equations (8), the governing
equation for H4(n) becomes

Hy" (M +3f(MH )+ (mHo() =0
0(0) =0, Hj(0) = 1.

(13)

The asymptotic boundary conditions as { - oo for
the corner layer are described finally as follows:

u~af'm, v~nf' =3,
w o~ pHy (), 0~ 1(n).

The conditions for the opposite plate can be
obtained from symmetry conditions (4); as y — oo,
{m-0

(14)

u~4af(), v~ yH ()
w~ L) =30, 8~ 1)

The corner layer problem is, thus, completely for-
mulated by equations (3) and boundary conditions
(5), (14), and (15).

The corner layer equations (3) are somewhat sim-
plified by eliminating the pressure and introducing the
‘velocity potentials’

(15

Hu

- lu
and the streamwise vorticity
4 1 )
Q=://,,—¢:=Zu,,—2u§—(w,,—b;). (17)
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The resulting cquations are given by
Viu+ du, +yu,—3u’+40 =0
V2Q+ oQ, + Y + ud+ u(nu, — (u,) +(0,—n0, =0
Vip+Q —u, =0
VY —Q,—u =0

1
EV29+¢0,,+1,//0¢=0

(18)
and the transformed boundary conditions are
u=¢=y=0, Q=y,, 6=1 atn=0
u=¢=y¢y=0, Q=—¢,, =1 at{=0
u~4af(m. ¢~3fm), v~If'(—yHo0)
Q~Lf7"m—yHY@), O~1t(n) as{->w
u~4af0, d~nf ) —7HW(, ¥ ~37()
Q~ —nf"O+7HJO). 0~ul) asn— .
(19)

It is observed that the corner layer equations (18)
and boundary conditions (19) are similar to those of
Rubin [10, 11] except that the temperature equation
is coupled with the flow field.

3. METHOD OF SOLUTION

Observation of the previous section shows that the
computational domain is an infinite region and corner
layer variables ¢, ¥, and Q become unbounded as %
or { - o0, which makes the numerical analysis of the
problem somewhat inconvenient.

In order to avoid these inconveniences, we intro-
duce new corner layer variables ¢, ¥, and Q

d=¢-—nf(©)
v=v—C{f"(n)
Q=Q+n/"Q)—=Lf"(n)

and transform the infinite region 0 < #,{ < oo into a
finite region 0 < N, S < 1

(20)

an af
N = S = .
1+an 1+a

@n

With the above transformations, we can impose the
asymptotic boundary conditions at true infinity and
have the effect of increasing the resolution near the
corner where large gradients are expected.

The final equations and boundary conditions are
written in terms of new defined variables and solved
numerically by the alternate direction implicit scheme.
The mesh size and grid spacing parameter that should
have a negligible effect on the solution were chosen
through many numerical experiments

H=0.02 a=02.
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FIG. 2. Streamwise isovels: (a) Pr = 0.72: (b) Pr =7.0.

Computations were made only for the variables u,
Q, &, and 0 in the region 0 < N, S < | and § was
determined  from the symmetry  property,
¥(N,S) = §(S,N).

The solution is considered to be converged when
the difference in the values of the dependent variables
from successive iterations was less than 10™* at every
grid point.

4. RESULTS AND DISCUSSION

The numerical results for Pr=0.72 and 7.0 are
presented in Figs. 2-6. Figure 2 shows the isolines for
streamwise velocity u. Observation of the velocity u
shows that there is an inner region in which « is smaller
than the asymptotic two-dimensional value. In this
region, the effect of the coupling between the two
plates leads to increasing the friction force and, there-
fore, decreasing the streamwise velocity, but outside
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FiG. 3. Magnitudes and directions of crossflow: (a)
Pr=0.72; (b) Pr="10.

this region, the interaction of the boundary layer
increases the buoyancy effect and accordingly the
velocity u. The closed contour which is not present in
the high-Reynolds number flow along a corner appears
in the vicinity of the symmetry plane near the corner.
This can be attributed to the increased amount of
flow entrainment near the corner due to the mutual
interaction of the two plates. The velocity boundary
layer thickness has its maximum value at the sym-
metry plane and becomes thinner as { increases and
ultimately approaches its asymptotic two-dimensional
value.

In Fig. 3, isolines of r = (v*+w?) /2, the magnitude
of the crossflow and the direction ® = tan~' (v/w) are
plotted. The magnitude of the crossflow, likewise the
streamwise velocity, depends largely on Prandt! num-
ber and becomes greater as the distance from the
corner increases. It is observed that the crossflow is
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F1G. 4. Isotherms: (a) Pr =0.72; (b) Pr=17.0.

directed almost radially inward to the corner, and
does not show the swirling motion which is present in
the high-Reynolds number flow. Considering the law
of conservation of mass, this may also partly explain
the presence of the closed contour of the streamwisc
isovels.

Figure 4 shows the temperature profiles for
Pr=0.72 and 7.0. The numerical results can be
accurately (within 2% error) represented in terms
of the solution of the natural convection on the two-
dimensional vertical plate

1=0(,0) = [1 =11 — ()] (22)
which is the solution of the following equation:

1

V043 ()0, +3/ (0 =0, (23)
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Pr=170.

The approximate equation for 6, equation (23), can
be obtained from the following observation. For large
¢ and finite #, the term Y0, is much smaller than ¢0,
since 0, = 0 for large {. Also, as shown in Fig. 5,
¢(n, ) is nearly equal to 3 f (), the asymptotic two-
dimensional value of ¢, for { > 5. Near the corner, the
conduction term in energy equation (18) is dominant.
Taking into account the symmetry property and the
above observations, we may approximate energy
equation (18) to obtain equation (23).

Local heat transfer coefficients are available from
the numerical solution. By definition

T
g = _kAé_

y ry=0

=hT,—T.).

HAT 31:7-C
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The local Nusselt number is

h G 1.4
Nu="" = —0,(0.0) <‘4’> .

X (24)

In a similar fashion, the local shear stress on the
plate results in, neglecting the effect of the secondary
flow

B ou* o (0.0) Tw, 25)
R R Rl

where 1, is the asymptotic two-dimensional value

v, Gr\**
‘[wx - )CZ f (0) ( 4) .

Figure 6 shows Nu and t,, for Pr=0.72 and 7.0.
The local Nusselt number Nu is zero at the corner line
due to the symmetry of the temperature along the
corner bisector, and increases monotonically to
approach its asymptotic two-dimensional value. The
local shear stress which is also zero at the corner line
attains its maximum value at a certain distance from
the vertex and then decreases to its asymptotic value
corresponding to the two-dimensional natural con-
vection problem. Considering the streamwise velocity
profiles, it is found that the {-position of maximum
shear stress is almost coincident with the position
where the velocity u becomes largest. The variations
of the local Nusselt number and shear stress with
Prandt] number can be seen clearly in the figurc.
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CONVECTION NATURELLE PRES D’UN COIN

Résumé—On considére le transfert thermique par convection naturelle laminaire au voisinage d’un coin

formé par I'intersection de deux plans verticaux. Pour un grand nombre de Grashof les équations de couche

limite sont dérivées et des conditions aux limites appropriées sont déterminées. Des solutions de ces

équations sont obtenues numériquement pour les distributions de vitesse et de température, le nombre de

Prandtl variant entre 0,72 et 7,0. Les configurations sont trés différentes de celles relatives a ’écoulement

pour des nombres de Reynolds élevés: on constate un écoulement simple d’entrée et le mouvement de
tourbillonnement dans le coin n’existe pas.

NATURLICHE KONVEKTION IN EINER RECHTWINKLIGEN ECKE

Zusammenfassung—Es wird die laminare natiirliche Konvektion in einer rechtwinkligen Ecke untersucht,
die aus zwei vertikalen viertels-unendlichen ebenen Platten gebildet wird. Fiir groBe Grashof-Zahlen
werden die Grenzschichtgleichungen fiir die Eckenstromung hergeleitet. Entsprechende Randbedingungen
werden bestimmt unter Verwendung der Methode der angepaBten Reihenentwicklung. Es werden
numerische Losungen der Gleichungen fiir das Geschwindigkeits- und Temperaturfeld fiir die Prandtl-
Zahlen 0,72 und 7,0 ermittelt. Das Kreuzstromungsverhalten ist ziemlich verschieden von der Stromung
entlang der Ecke bei grolen Reynolds-Zahlen. Das einfache Einstromungsverhalten in die Ecke erscheint.
Die Wirbelstrémung in der Ecke wurde nicht gefunden.

ECTECTBEHHA S KOHBEKLWA BBJIN3U IBYTPAHHOI'O YT'JIA

Annorauns—PaccMaTpHuBaeTcs TEIIONEPEHOC NPH JIAMUHAPHOH eCTeCTBECHHONW KOHBEKLMH BOJIM3M ABYT-
PaHHOTO TMPSAMOro yria, oO0pa3oBaHHOTO MEPECEYECHHEM ABYX BEPTHKANBHBIX YETBEPTh-OECKOHEYHBIX
1ockuX miacTud. [{ns Gonbminx 3HaveHuit yncna ['pacroda 3anucansl ypaBHEHHs NOrpaHHYHOrO CJOS
JUTS )KAAKOCTH BOJIM3H yIJla ¥ ¢ HCIOJIb30BAHHEM METO/IA CPALMBAEMbIX ACHMIITOTHYECKHX Pa3IOXEHHH
onpeaencHb COOTBETCTBYIOLME I'DaHUYHBIC YCIOBUS. UMCIIEHHBIM pEILCHHEM 3THX YpABHEHMH moury-
4YeHb! PACIpPEJEJICHHs] CKOPOCTH H TeMInepaTypbl npH uuciax IIpanarns, pasHeix 0,72 u 7,0. Teyenne B
[ONEpPeHOM HampaB/IcHHH MMEET COBEPILEHHO APYroil XapakTep, HEXelH Te4eHHE B OPOJOJIbHOM Ham-
pasnieunu. [Ipu GonpuioM 3HadeHun yucna PeifHonbaca HMEET MeCTO POCTOE GE3BUXPEBOE TEUCHHE 110
HaNpapJIeHUIO K pedbpy yria.



